SESSION DE 2004

concours interne de recrutement de professeurs agrégés et concours d'accès à l'échelle de rémunération

section: mathématiques

deuxième épreuve de mathématiques

durée: 6 heures

Calculatrice de poche, y compris programmable, alphanumérique ou à écran graphique, à fonctionnement autonome, non imprimante, autorisée conformément à la circulaire n°99-186 du 16 novembre 1999.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout matériel électronique est rigoureusement interdit.

Introduction et notations

Ce texte d'analyse fonctionnelle a pour objet l'étude de quelques propriétés des séries trigonométriques; il se conclut par une application à la résolution d'un problème de DIRICHLET par une approche variationnelle, (partie III).

Dans tout ce qui suit on note:

- $\mathcal{C}([0,\pi],\mathbf{R})$ le **R**-espace vectoriel des applications continues du segment $[0,\pi]$ dans **R**;
- E le **R**-espace vectoriel des applications f de $[0, \pi]$ dans **R**, continues, de classe \mathcal{C}^1 par morceaux et vérifiant $f(0) = f(\pi) = 0$;

Pour f appartenant à E on convient de désigner par f' la fonction définie sur $[0,\pi]$ par

- si en x de $[0,\pi]$ f est dérivable, alors f'(x) est le nombre dérivé de f en ce point;
- si en x de $[0, \pi]$ f n'est pas dérivable, alors f'(x) = 0;
- $\ell_{\mathbf{R}}^2$ le **R**-espace vectoriel des suites $(\alpha_n)_{n\geq 1}$ de nombres réels telles que la série $\sum_{n=1}^{\infty} \alpha_n^2$ converge;

On rappelle que, si $\alpha=(\alpha_n)_{n\geq 1}$ et $\beta=(\beta_n)_{n\geq 1}$ sont deux éléments de $\ell^2_{\mathbf{R}}$, la série de terme général $(\alpha_n\beta_n)_{n\geq 1}$ est absolument convergente. De plus l'application $(\alpha,\beta)\mapsto <\alpha,\beta>=\sum_{n=1}^\infty\alpha_n\beta_n$ est un produit scalaire sur $\ell^2_{\mathbf{R}}$ et $\ell^2_{\mathbf{R}}$ est complet pour la norme associée à ce produit scalaire;

- pour tout entier $n \ge 1$, par e_n l'élément de E défini par $e_n(x) = \sin nx$.

Partie I: Questions préliminaires. Exemples

A. Un lemme de CANTOR

Soient $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ deux suites de nombres réels. Pour tout x de \mathbf{R} et pour tout entier $n\geq 1$ on pose $f_n(x)=a_n\cos nx+b_n\sin nx$, et on suppose que pour tout x réel la suite $(f_n(x))$ converge vers 0. On se propose de montrer que les suites (a_n) et (b_n) ont pour limite 0 en $+\infty$.

- 1. Montrer que $a_n \xrightarrow[n \to \infty]{} 0$. En déduire que, pour tout x de \mathbf{R} , $b_n \sin nx \xrightarrow[n \to \infty]{} 0$.
- 2. Dans cette question, on propose deux méthodes pour montrer que la suite (b_n) a pour limite 0 en $+\infty$.
 - (a) Raisonnement par l'absurde

On suppose que la suite (b_n) ne converge pas vers 0.

- i. Montrer qu'il existe un réel strictement positif ε et une sous suite (b_{n_k}) de la suite (b_n) tels que $n_1 > 0$ et que l'on ait, pour tout entier k, $|b_{n_k}| \ge \varepsilon$ et $n_{k+1} \ge 3n_k$.
- ii. Construire pour tout entier k un intervalle $[a_k, b_k]$ de la forme $a_k = \frac{\pi}{6} + p_k \pi$, $b_k = \frac{5\pi}{6} + p_k \pi$, avec $p_k \in \mathbf{Z}$, tel que si $J_k = \frac{1}{n_k} [a_k, b_k]$ l'on ait, pour tout entier $k, J_{k+1} \subset J_k$. Vérifier que $|\sin n_k x| \ge \frac{1}{2}$ pour tout x de J_k .

- iii. Établir que l'intersection $\bigcap_{k>1} J_k$ n'est pas vide, et conclure à une contradiction.
- (b) Intervention du calcul intégral
 - (i) Calculer $\int_0^{2\pi} (b_n \sin nx)^2 dx$.
 - (ii) Conclure dans le cas où la suite (b_n) est bornée.
 - (iii) Dans le cas général, on pose $b'_n = \inf(1, |b_n|)$. Vérifier que, pour tout x de \mathbf{R} , $b'_n \sin nx \xrightarrow[n \to \infty]{} 0$. Conclure.

B. L'espace H

- 1. (a) Soient $\alpha = (\alpha_n)_{n \geq 1}$ un élément de $\ell^2_{\mathbf{R}}$ et x un élément de $[0, \pi]$. Montrer que la série de terme général $\frac{\alpha_n}{n} e_n(x)$ converge absolument (on pourra utiliser l'inégalité $ab \leq \frac{1}{2}(a^2 + b^2)$ pour deux nombres réels a et b).
 - (b) On pose $\theta(\alpha)(x) = \sum_{n=1}^{\infty} \frac{\alpha_n}{n} e_n(x)$. Montrer que l'on définit ainsi une application θ de $\ell_{\mathbf{R}}^2$ dans $\mathcal{C}([0,\pi],\mathbf{R})$.
 - (c) Établir que θ est linéaire et injective.

Dans toute la suite on notera H l'image de θ , et $||\cdot||_H$ la norme définie sur H, pour $f=\theta(\alpha)$, par $||f||_H=\sqrt{\sum_{n=1}^\infty \alpha_n^2}$. Vérifier que H est complet pour cette norme.

- 2. Établir l'inclusion $E \subset H$. (On pourra montrer que tout élément f de E est la restriction à $[0, \pi]$ d'une unique fonction \widetilde{f} 2π -périodique et impaire, de classe \mathcal{C}^1 par morceaux, et développer \widetilde{f} en série de FOURIER).
- 3. Montrer que l'application qui à un couple (f,g) d'éléments de E associe le nombre

$$(f | g) = \frac{2}{\pi} \int_0^{\pi} f'(t)g'(t) dt$$

est un produit scalaire sur E. Vérifier que la norme associée à ce produit scalaire coïncide avec la restriction à E de $||\cdot||_H$.

Montrer que E est dense dans H pour la topologie associée à la norme $\|\cdot\|_H$.

- 4. Pour f dans H, on pose $||f||_{\infty} = \sup_{x \in [0,\pi]} |f(x)|$.
 - (a) Prouver l'existence d'une constante k telle que l'on ait l'inégalité, valable pour tout f de H:

$$(\star)$$
 $\forall f \in H, ||f||_{\infty} \le k||f||_{H}.$

(b) Pour tout élément a de $]0,\pi[$, on désigne par h_a l'élément de E défini en tout x par

$$h_a(x) = \begin{cases} \frac{x}{a} & \text{si } x \le a \\ \frac{\pi - x}{\pi - a} & \text{si } x > a \end{cases}.$$

En appliquant l'inégalité de CAUCHY-SCHWARZ au produit scalaire $(f|h_a)$, pour f dans E, montrer que la plus petite valeur de k telle que l'on ait (\star) est $\pi/\sqrt{8}$.

3

5. On se propose de démontrer que si F est une application de classe C^2 de \mathbf{R} dans \mathbf{R} telle que F(0) = 0, et si f est un élément de H, alors $F \circ f$ appartient à H.

Soient f un élément de H et (f_n) une suite d'éléments de E convergeant vers f au sens de la norme $||\cdot||_H$. On pose $g_n = F \circ f_n$.

(a) Vérifier que la suite $(||f_n||_{\infty})$ est bornée.

On note A un réel vérifiant $||f_n||_{\infty} \leq A$ pour tout n, puis $M_1 = \sup_{|t| \leq A} |F'(t)|$ et $M_2 = \sup_{|t| \leq A} |F''(t)|$.

(b) Établir que, pour tous p, q dans \mathbf{N} , on a l'inégalité:

$$||g_p - g_q||_H \le \left(\frac{\pi}{\sqrt{8}} M_2 ||f_p||_H + M_1\right) ||f_p - f_q||_H.$$

- (c) Conclure.
- (d) En déduire que H est une algèbre, i.e. que le produit fg de deux éléments f et g de H est un élément de H. (On pourra utiliser la relation $4fg = (f+g)^2 (f-g)^2$).

Partie II: Pseudo-dérivée seconde au sens de SCHWARZ

Si f est une application continue de ${\bf R}$ dans ${\bf R}$, on dit que f admet au point x une dérivée seconde au sens de SCHWARZ si, et seulement si, $\lim_{h\to 0, h\neq 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2}$ existe; dans ce cas la limite est notée $f^{('')}(x)$.

- 1. Montrer que si f est deux fois dérivable sur \mathbf{R} , $f^{('')}(x)$ existe en tout x de \mathbf{R} , et en donner la valeur.
- 2. Soit f une application de ${\bf R}$ dans ${\bf R}$ possédant en tout x de R une pseudo-dérivée seconde au sens de SCHWARZ nulle.
 - (a) Soient a et b des réels tels que a < b, ε un réel strictement positif. On pose

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) - \varepsilon(x - a)(b - x)$$

Vérifier que la fonction φ est continue et que $\varphi(a) = \varphi(b) = 0$. Calculer $\varphi^{('')}$.

Montrer que φ ne peut avoir de maximum strictement positif sur [a, b].

- (b) En déduire que f est affine.
- 3. Soient $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ deux suites de réels tels que la série de fonctions de terme général $(a_n\cos nx b_n\sin nx)_{n\geq 1}$ converge simplement sur **R** vers une fonction f continue sur **R**. On pose alors

$$F(x) = -\sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{n^2}$$

- (a) Justifier l'existence de F sur \mathbf{R} et prouver sa continuité.
- (b) Pour x dans \mathbf{R} et h > 0 on pose

$$u(0) = 1, \ u(x) = \frac{4}{x^2} \sin^2 \left(\frac{x}{2}\right) \ \text{si} \ x \neq 0 \ \text{et} \ \Delta(x,h) = \frac{F(x+h) + F(x-h) - 2F(x)}{h^2}.$$

Vérifier la relation

$$\Delta(x,h) = \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) u(nh).$$

(c) Si l'on pose
$$S_0(x) = 0$$
 et $S_n(x) = \sum_{k=1}^n a_k \cos kx + b_k \sin kx$ pour $n \ge 1$, justifier l'égalité

$$\Delta(x,h) - f(x) = \sum_{n=0}^{\infty} [S_n(x) - f(x)][u(nh) - u((n+1)h)].$$

- (d) i. En remarquant que $u((n+1)h) u(nh) = \int_{nh}^{(n+1)h} u'(x) dx$, déduire de ce qui précède que, pour tout réel x, $F^{('')}(x)$ existe et vaut f(x).
 - ii. Montrer que l'application qui au réel x associe $\int_0^x (x-t)f(t) dt$ est de classe C^2 calculer sa dérivée seconde.
 - iii. Prouver finalement l'existence de réels α et β tels que pour tout réel x l'on ait

$$F(x) = \alpha x + \beta + \int_0^x (x - t) f(t) dt.$$

(e) En utilisant ce qui précède, établir que les suites (a_n) et (b_n) sont les coefficients de FOURIER de f, i.e. que pour tout n :

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
 et $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$.

Partie III: Application à un problème variationnel

On désigne par E_0 le sous-espace vectoriel de E des applications v de $[0, \pi]$ dans \mathbf{R} , de classe \mathcal{C}^1 et vérifiant $v(0) = v(\pi) = 0$.

On considère une application continue f de $[0,\pi]$ dans **R** telle que, pour tout x de $[0,\pi]$,

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

où $(b_n)_{n\geq 1}$ est une suite de nombres réels.

1. Montrer que, pour tout x de \mathbf{R} , la série de terme général $(b_n \sin nx)_{n\geq 1}$ est convergente, et que sa somme coïncide avec l'unique application \widetilde{f} de \mathbf{R} dans \mathbf{R} , impaire, 2π -périodique et prolongeant f.

Justifier que, pour tout entier $n \geq 1$:

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, \mathrm{d}x.$$

2. Le problème variationnel

On désigne par $J:E_0\to {\bf R}$ la fonctionnelle définie par :

$$\forall v \in E_0, \ J(v) = \frac{1}{2} \int_0^{\pi} [(v'(x))^2 + (v(x))^2] \, \mathrm{d}x - \int_0^{\pi} f(x)v(x) \, \mathrm{d}x,$$

et on s'intéresse au problème de minimisation suivant :

(P) Trouver $u \in E_0$ tel que, pour tout $v \in E_0$, $J(u) \leq J(v)$.

Établir, pour tout t de \mathbf{R} et tous u, v de E_0 , l'identité suivante :

$$J((1-t)u+tv) + \frac{t(1-t)}{2} \int_0^{\pi} \left[(v'(x) - u'(x))^2 + (v(x) - u(x))^2 \right] dx = (1-t)J(u) + tJ(v).$$

3. Unicité de la solution du problème (P)

Déduire de la question précédente que si u_l et u_2 sont solutions de (P), alors :

$$\int_0^{\pi} \left[(u_1'(x) - u_2'(x))^2 + (u_1(x) - u_2(x))^2 \right] dx = 0$$

et, par suite, $u_1 = u_2$.

- 4. Caractérisation des solutions de (P)
 - (a) Montrer que pour tous u, v de E_0 , l'on a, pour tout réel t:

$$J(u+tv) = J(u) + t \int_0^{\pi} (u'(x)v'(x) + u(x)v(x) - f(x)v(x)) dx + \frac{t^2}{2} \int_0^{\pi} (v'^2(x) + v^2(x)) dx.$$

(b) En déduire que, pour u dans E_0 , u est solution de (P) si, et seulement si, u vérifie :

$$(P')$$
 $\forall v \in E_0, \ \int_0^\pi (u'(x)v'(x) + u(x)v(x)) \, \mathrm{d}x = \int_0^\pi f(x)v(x) \, \mathrm{d}x.$

- 5. Existence d'une solution de (P)
 - (a) Soit u une solution de (P). Déduire de la question précédente que nécessairement, pour tout entier $n \geq 1$:

$$\frac{2}{\pi} \int_0^{\pi} u(x) \sin nx \, \mathrm{d}x = \frac{b_n}{n^2 + 1}.$$

(b) Pour tout x de \mathbf{R} , on pose $\widetilde{u}(x) = \sum_{n=1}^{\infty} \frac{b_n}{n^2+1} \sin nx$. En écrivant

$$\widetilde{u}(x) = \sum_{n=1}^{\infty} \frac{b_n}{n^2} \sin nx - \sum_{n=1}^{\infty} \frac{b_n}{n^2(n^2+1)} \sin nx$$

montrer que \widetilde{u} est de classe \mathcal{C}^2 sur \mathbf{R} , 2π -périodique et vérifie :

$$\begin{cases} -\widetilde{u}'' + \widetilde{u} = \widetilde{f} \\ \widetilde{u}(0) = \widetilde{u}(\pi) = 0 \end{cases}$$

(c) En déduire que la restriction u de \widetilde{u} à $[0,\pi]$ est de classe \mathcal{C}^2 sur $[0,\pi]$ et est solution, sur cet intervalle, du problème de DIRICHLET:

(D)
$$\begin{cases} -u'' + u = f \\ u(0) = u(\pi) = 0 \end{cases}$$

6

(d) Montrer que u est solution de (P'), et donc de (P).