Notations.

On désigne par $\mathbb N$ l'ensemble des entiers naturels, par $\mathbb N^*$ celui des entiers naturels non nuls, par $\mathbb R$ celui des réels, par \mathbb{R}_+ celui des réels positifs ou nuls.

On désigne par \mathbb{C} l'ensemble des complexes; si $s \in \mathbb{C}$, on note Re (s) sa partie réelle et Im (s) sa partie imaginaire. Lorsque l'on pose:

$$s = \alpha + i\beta$$
,

on signifie par là que $\alpha = \text{Re}(s)$ et $\beta = \text{Im}(s)$.

Soit $\sigma \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si $\sigma \neq +\infty$ et $\sigma \neq -\infty$, on désigne par $\Pi(\sigma)$ le demi-plan formé des complexes s tels que Re(s) > σ . On pose $\Pi(+\infty) = \emptyset$, et $\Pi(-\infty) = \mathbb{C}$.

On note \mathcal{C} l'espace vectoriel des applications continues de \mathbb{R}_+ dans \mathbb{C} .

Si $\phi \in \mathcal{C}$, on dit que l'intégrale $\int_0^{+\infty} \phi(t) dt$ converge lorsque $\int_0^X \phi(t) dt$ admet une limite dans

 \mathbb{C} lorsque X tend vers $+\infty$. On note alors $\int_0^{+\infty} \phi(t) dt$ la valeur de cette limite. On rappelle que

 $\int_{1}^{+\infty} \phi(t) dt$ peut converger sans que ϕ soit intégrable sur \mathbb{R}_{+} .

Objectifs. La partie I est consacrée à la transformation de Laplace. Certains résultats qui y sont énoncés sont utilisés tout au long du problème. La partie II étudie les rapports entre le comportement au voisinage de 0 de la transformée de Laplace d'une application f et l'existence de $\mathcal{L}(f)(0)$. La partie III s'attache à étudier un résultat assez fin relatif à ce genre de situation, connu sous le nom de théorème d'Ikehara.

I. La transformation de Laplace.

Soit $f \in \mathcal{C}$. Si $s \in \mathbb{C}$, on dit que $\mathcal{L}(f)(s)$ est défini lorsque l'intégrale $\int_0^{+\infty} e^{-xs} f(x) dx$ converge. On note alors $\mathcal{L}(f)(s)$ la valeur de cette intégrale. Le domaine de définition de $\mathcal{L}(f)$, noté $\mathcal{DL}(f)$, est une partie de \mathbb{C} . L'application $\mathcal{L}(f)$, qui va donc de $\mathcal{DL}(f)$ dans \mathbb{C} , est appelée transformée de Laplace de f.

1. Premier exemple

Dans ce I1, f désigne l'application constante égale à 1 sur \mathbb{R}_+ .

- a. Soit $\alpha \in \mathbb{R}$. Montrer que $\mathcal{L}(f)(\alpha)$ est défini si, et seulement si, α est strictement positif. Calculer $\mathcal{L}(f)(\alpha)$ pour $\alpha > 0$.
- **b.** Soit $s = i\beta$, où $\beta \in \mathbb{R} \setminus \{0\}$. Montrer que, lorsque X tend vers $+\infty$ par valeurs réelles, e^{-Xs} n'admet pas de limite dans \mathbb{C} .
- c. Soit $s = \alpha + i\beta$. Montrer que $\mathcal{L}(f)(s)$ est défini si, et seulement si, α est strictement positif. Calculer $\mathcal{L}(f)(s)$ pour $s \in \Pi(0)$.

Indication. On commencera par déterminer $|e^z|$ lorsque z est un complexe.

2. Abscisse de convergence

Soit $f \in \mathcal{C}$.

a. Soit $s_0 = \alpha_0 + i\beta_0 \in \mathcal{DL}(f)$. On pose, pour tout x réel positif ou nul : $F(x) = \int_0^x e^{-ts_0} f(t) \, \mathrm{d} t.$ Soit $s \in \Pi(\alpha_0)$. Montrer que s appartient à $\mathcal{DL}(f)$ et que :

$$F(x) = \int_0^x e^{-ts_0} f(t) dt.$$

$$\mathcal{L}(f)(s) = (s - s_0) \int_0^{+\infty} e^{-x(s - s_0)} F(x) \, dx.$$

Indication. On pourra procéder à une intégration par parties.

- **b.** Montrer qu'il existe un unique $\sigma \in \mathbb{R} \cup \{-\infty, +\infty\}$ vérifiant les propriétés suivantes :
 - (i) Si Re $(s) > \sigma$, $\mathcal{L}(f)(s)$ est défini;
 - (ii) Si Re $(s) < \sigma$, $\mathcal{L}(f)(s)$ n'est pas défini.

Ce σ est appelé abscisse de convergence de $\mathcal{L}(f)$. On le notera $\sigma(f)$ lorsque l'on voudra marquer sa dépendance vis-à-vis de f.

c. Montrer que, si f est à valeurs réelles positives ou nulles et si $s \in \Pi(\sigma)$, l'application $t \mapsto e^{-ts} f(t)$ est intégrable sur \mathbb{R}_+ .

3. Deuxième exemple

Soient $\lambda \in \mathbb{C}$ et f définie sur \mathbb{R}^+ par :

$$f(x) = e^{\lambda x}.$$

Déterminer $\mathcal{DL}(f)$, $\sigma(f)$ et $\mathcal{L}(f)$.

4. Propriétés de $\mathcal{L}(f)$

Soit $f \in \mathcal{C}$ telle que $\sigma(f) < +\infty$.

a. Montrer que $\mathcal{L}(f)$ est continue sur $\Pi(\sigma(f))$. Indication. On pourra utiliser I2a.

b. On pose, pour $s = \alpha + i\beta \in \Pi(\sigma(f))$:

$$L(\alpha, \beta) = \mathcal{L}(f)(s).$$

Montrer que L est de classe \mathcal{C}^1 sur l'ensemble $\{(\alpha,\beta)\in\mathbb{R}^2;\alpha>\sigma(f)\}$. Montrer aussi que $\frac{\partial L}{\partial \alpha}(\alpha,\beta)=-\int_0^{+\infty}xe^{-xs}f(x)~\mathrm{d}\,x.$

Indication. On pourra utiliser I2a.

- **c.** Montrer que, sur l'intervalle réel $]\sigma(f), +\infty[$, $\mathcal{L}(f)$ est de classe \mathcal{C}^{∞} , et donner, pour $k \in \mathbb{N}$, une expression intégrale de la dérivée d'ordre k de $\mathcal{L}(f)$, notée $\mathcal{L}(f)^{(k)}$.
- **d.** Montrer que $\mathcal{L}(f)(\alpha)$ tend vers 0 lorsque α tend vers $+\infty$ par valeurs réelles. Indication. On pourra utiliser I2a. On pourra ensuite introduire un réel η tel que $|F(x)| \leq \varepsilon$ pour $x \in [0, \eta]$, puis écrire :

$$\int_0^{+\infty} e^{-x(\alpha - \alpha_0)} F(x) \, dx = \int_0^{\eta} e^{-x(\alpha - \alpha_0)} F(x) \, dx + \int_n^{+\infty} e^{-x(\alpha - \alpha_0)} F(x) \, dx.$$

II. Comportement asymptotique d'une transformée de Laplace

Dans toute cette partie II, on considère une application f, élément de \mathcal{C} . On examinera les rapports qui peuvent exister entre le comportement $\mathcal{L}(f)$ au voisinage de 0 et l'existence de $\mathcal{L}(f)(0)$.

1. Cas où $\mathcal{L}(f)(0)$ est défini

Dans cette question II1, on suppose que l'intégrale $\int_0^{+\infty} f(x) dx$ converge.

- **a.** Montrer que $\sigma(f) \leq 0$.
- **b.** Montrer que $\mathcal{L}(f)(\alpha)$ admet une limite, lorsque α tend vers 0 par valeurs réelles strictement positives, et que cette limite est égale à $\int_0^{+\infty} f(x) \ \mathrm{d} \, x$.

Indication. On pourra utiliser I2a.

2. Un contre-exemple

Dans cette question II2, on suppose que f est défini sur \mathbb{R}_+ par $f(t) = \sin t$.

- **a.** Déterminer $\mathcal{DL}(f)$, ainsi que $\mathcal{L}(f)(s)$ pour $s \in \mathcal{DL}(f)$.
- **b.** Montrer que $\mathcal{L}(f)(\alpha)$ admet une limite, lorsque α tend vers 0 par valeurs réelles strictement positives, bien que $\int_{0}^{+\infty} f(x) dx$ ne converge pas.

3. Cas d'une application f positive

Dans cette question II3, on suppose que f est à valeurs positives ou nulles, que $\sigma(f) \leq 0$ et que $\mathcal{L}(f)(\alpha)$ admet, lorsque α tend vers 0 par valeurs réelles strictement positives, la limite réelle λ .

Montrer que l'intégrale $\int_0^{+\infty} f(x) dx$ converge. Déterminer sa valeur.

4. Un exemple de théorème taubérien

Dans cette question II4, on suppose que xf(x) tend vers 0 lorsque x tend vers $+\infty$.

- **a.** Vérifier que $\sigma(f) \leq 0$.
- **b.** Montrer que $\frac{1}{A} \int_0^A |xf(x)| dx$ tend vers 0 lorsque A tend vers $+\infty$.

c. Montrer que, pour tous
$$\alpha$$
 et A réels strictement positifs, on a :
$$\left|\int_A^{+\infty} f(x)e^{-x\alpha} \ \mathrm{d}\,x\right| \leqslant \frac{e^{-A\alpha}}{A\alpha} \sup_{t\geqslant A} |tf(t)|.$$

d. On fait, dans cette question II4d, l'hypothèse supplémentaire que $\mathcal{L}(f)(\alpha)$ admet, lorsque α tend vers 0 par valeurs réelles strictement positives, la limite complexe μ . Déduire de ce qui précède qu'alors $\mathcal{L}(f)(0)$ est défini.

Indication. On pourra étudier la différence $\int_0^{+\infty} f(x)e^{-\alpha x} dx - \int_0^A f(x) dx$ en choisissant convenablement α en fonction de A, et utiliser, en la justifiant, l'inégalité $1-e^{-u}\leqslant u$ pour $u \geqslant 0$.

III. Le théorème taubérien d'Ikehara

Le but de cette partie est d'étudier le comportement de f en $+\infty$, à partir du comportement de $\mathcal{L}(f)$ au voisinage de la droite Re(s) = 1. Cette partie est assez largement indépendante de la partie II.

A. Préliminaires

A1. Calcul d'une intégrale

Soit Δ l'application continue sur $\mathbb R$ définie pour $x{\ne}0$ par : $\Delta(x)=\frac{\sin^2x}{\pi x^2}.$

$$\Delta(x) = \frac{\sin^2 x}{\pi x^2}$$

- **a.** Montrer que $\sigma(\Delta) \leq 0$.
- **b.** Pour $\alpha > 0$, calculer $(\mathcal{L}(\Delta))''(\alpha)$. En déduire la valeur de $\mathcal{L}(\Delta)(\alpha)$ pour $\alpha > 0$.
- **c.** Montrer que $\mathcal{L}(\Delta)$ est définie, et continue, sur \mathbb{R}_+ . En déduire :

$$\int_{-\infty}^{+\infty} \Delta(x) \, \mathrm{d}x = 1.$$

A2. Calcul d'une intégrale

Soient $\lambda > 0$ et $\eta > 0$.

On définit l'application H, de $[-2\lambda, 2\lambda]$ dans \mathbb{C} , par :

$$H(\beta) = \frac{1}{\pi} \left(1 - \frac{|\beta|}{2\lambda} \right) e^{i\eta\beta}.$$

Calculer, pour $x \in \mathbb{R}$:

$$\int_{-2\lambda}^{2\lambda} H(\beta) e^{-i\beta x} \, \mathrm{d}\beta.$$

On donnera une expression de cette intégrale à l'aide de l'application Δ , définie dans le IIIA1.

A3. Le lemme de Riemann-Lebesgue

Soit f une application de classe \mathcal{C}^1 sur un segment [a,b]. Montrer que, lorsque γ tend vers $+\infty$ par valeurs réelles, $\int_{a}^{b} f(t)e^{i\gamma t} dt$ tend vers 0.

On admettra que ce résultat s'applique au cas d'une application f continue sur un segment [a, b].

B. Le théorème

Dans toute cette partie IIIB, on considère une application f, élément de \mathcal{C} , telle que $\sigma(f) \leq 1$. On suppose en outre f croissante sur \mathbb{R}_+ , et à valeurs réelles positives ou nulles.

Pour $s \in \Pi(0)$, on pose, ce qui a bien un sens d'après l'hypothèse faite sur $\sigma(f)$:

$$\delta(s) = \mathcal{L}(f)(1+s) - \frac{1}{s}.$$

On remarquera dans la suite que:

$$\frac{1}{s} = \int_0^{+\infty} e^{-xs} \, \mathrm{d} x.$$

On fait l'hypothèse \mathcal{P} suivante :

 \mathcal{P} Il existe une application r de \mathbb{R} dans \mathbb{C} telle que, pour tout λ réel strictement positif :

$$\sup_{|\beta| \le \lambda} |\delta(\alpha + i\beta) - r(\beta)| \xrightarrow{\alpha \to 0^+} 0.$$

Le théorème d'Ikehara, but de cette partie III, affirme qu'alors, si $g(x)=f(x)e^{-x}$, on a :

$$g(x) \xrightarrow{x \to +\infty} 1.$$

B1. Continuité de r

Montrer que l'application r est continue sur \mathbb{R} .

B2. Une égalité d'intégrales

Dans cette question IIIB2, on fixe $\lambda > 0$ et $\eta > 0$.

On considère, comme dans le IIIA2, l'application H, de $[-2\lambda, 2\lambda]$ dans \mathbb{C} :

$$H(\beta) = \frac{1}{\pi} \left(1 - \frac{|\beta|}{2\lambda} \right) e^{i\eta\beta}.$$

On note aussi, pour $\alpha > 0$:

$$K(\alpha) = \int_{-2\lambda}^{2\lambda} H(\beta) \delta(\alpha + i\beta) d\beta.$$

- a. Déterminer la limite de $K(\alpha)$ lorsque α tend vers 0 par valeurs strictement positives. Indication. On utilisera l'hypothèse \mathcal{P} .
- **b.** Du IIIA2, déduire que, pour tout α réel strictement positif :

$$K(\alpha) = 2\lambda \int_0^{+\infty} e^{-x\alpha} \Delta(\lambda(\eta - x))(g(x) - 1) \, dx.$$

Indication. On utilisera, en la justifiant, l'interversion de deux intégrales.

c. Montrer:

$$\int_0^{+\infty} e^{-x\alpha} \Delta(\lambda(\eta - x)) dx \xrightarrow{\alpha \to 0^+} \int_0^{+\infty} \Delta(\lambda(\eta - x)) dx.$$

d. Après avoir montré la convergence de l'intégrale qui figure dans le membre de gauche de l'égalité (1) ci-dessous, vérifier cette égalité.

(1)
$$2\lambda \int_0^{+\infty} \Delta(\lambda(\eta - x))(g(x) - 1) dx = \int_{-2\lambda}^{2\lambda} H(\beta)r(\beta) d\beta.$$

Indication. On utilisera IIIB2a, IIIB2b et IIIB2c.

B3. Un calcul de limite

On reprend les notations du IIIB2, mais on ne fixe à présent que $\lambda > 0$.

a. Déterminer

$$\lim_{\eta \to +\infty} \int_{-2\lambda}^{2\lambda} H(\beta) r(\beta) \, d\beta.$$

b. De la relation (1), déduire :

(2)
$$\int_{-\infty}^{\eta} \Delta(u) g\left(\eta - \frac{u}{\eta \lambda}\right) du \xrightarrow{\eta \to +\infty} 1.$$

B4. Une majoration de g(x)

a. On fixe $\eta \geqslant \frac{1}{\sqrt{\lambda}}$. En utilisant la croissance de f, montrer :

$$\int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} \Delta(u) g\left(\eta - \frac{u}{\lambda}\right) \, \mathrm{d}\, u \geqslant \int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} \Delta(u) g\left(\eta - \frac{1}{\sqrt{\lambda}}\right) e^{-\frac{1}{\sqrt{\lambda}} + \frac{u}{\lambda}} \, \mathrm{d}\, u.$$

b. Du IIIB4a, déduire :

$$\int_{-\infty}^{\eta\lambda} \Delta(u) g\left(\eta - \frac{u}{\lambda}\right) \, \mathrm{d}\, u \geqslant g\left(\eta - \frac{1}{\sqrt{\lambda}}\right) e^{-\frac{2}{\sqrt{\lambda}}} \int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} \Delta(u) \, \, \mathrm{d}\, u.$$

c. De ce qui précède, déduire que, pour tout ε strictement positif et strictement plus petit que 1, il existe un réel A tel que, pour tout $x \ge A$:

$$g(x) \leqslant \frac{1+\varepsilon}{1-\varepsilon}.$$

Indication. On utilisera la valeur de $\int_{-\infty}^{+\infty} \Delta(x) dx$, ainsi que la relation (2).

B5. Une minoration de g(x)

a. Montrer que g est majorée sur \mathbb{R}_+ . Indication. On utilisera IIIB4c.

b. En utilisant un raisonnement analogue à celui du IIIB4, montrer que, pour tout ε strictement positif, il existe un réel A tel que, pour tout $x \ge A$:

$$g(x) \geqslant 1 - \varepsilon$$
.

Indication. On décomposera $\int_{-\infty}^{\lambda\eta} \operatorname{en} \int_{-\infty}^{-\sqrt{\lambda}} + \int_{-\sqrt{\lambda}}^{\sqrt{\lambda}} + \int_{\sqrt{\lambda}}^{\lambda\eta} \operatorname{pour} \eta \geqslant \frac{1}{\sqrt{\lambda}}.$

Conclusion

En déduire que $f(x) \underbrace{\sim}_{x \to +\infty} e^x$.